159 research outputs found

    Neuroimaging correlates of brain injury in Wilson's disease: a multimodal, whole-brain MRI study

    Get PDF
    Wilson's disease is an autosomal-recessive disorder of copper metabolism with neurological and hepatic presentations. Chelation therapy is used to 'de-copper' patients but neurological outcomes remain unpredictable. A range of neuroimaging abnormalities have been described and may provide insights into disease mechanisms, in addition to prognostic and monitoring biomarkers. Previous quantitative MRI analyses have focussed on specific sequences or regions of interest, often stratifying chronically-treated patients according to persisting symptoms as opposed to initial presentation. In this cross-sectional study, we performed a combination of unbiased, whole-brain analyses on T1-weighted, fluid-attenuated inversion recovery, diffusion-weighted and susceptibility-weighted imaging data from 40 prospectively-recruited patients with Wilson's disease (age range 16-68). We compared patients with neurological (n = 23) and hepatic (n = 17) presentations to determine the neuroradiological sequelae of the initial brain injury. We also subcategorized patients according to recent neurological status, classifying those with neurological presentations or deterioration in the preceding six months as having 'active' disease. This allowed us to compare patients with active (n = 5) and stable (n = 35) disease and identify imaging correlates for persistent neurological deficits and copper indices in chronically-treated, stable patients. Using a combination of voxel-based morphometry and region-of-interest volumetric analyses, we demonstrate that grey matter volumes are lower in the basal ganglia, thalamus, brainstem, cerebellum, anterior insula and orbitofrontal cortex when comparing patients with neurological and hepatic presentations. In chronically-treated, stable patients, the severity of neurological deficits correlated with grey matter volumes in similar, predominantly subcortical regions. In contrast, the severity of neurological deficits did not correlate with the volume of white matter hyperintensities, calculated using an automated lesion segmentation algorithm. Using tract-based spatial statistics, increasing neurological severity in chronically-treated patients was associated with decreasing axial diffusivity in white matter tracts whereas increasing serum non-caeruloplasmin-bound ('free') copper and active disease were associated with distinct patterns of increasing mean, axial and radial diffusivity. Whole-brain quantitative susceptibility mapping identified increased iron deposition in the putamen, cingulate and medial frontal cortices of patients with neurological presentations relative to those with hepatic presentations and neurological severity was associated with iron deposition in widespread cortical regions in chronically-treated patients. Our data indicate that composite measures of subcortical atrophy provide useful prognostic biomarkers, whereas abnormal mean, axial and radial diffusivity are promising monitoring biomarkers. Finally, deposition of brain iron in response to copper accumulation may directly contribute to neurodegeneration in Wilson's disease

    Human Probing Behavior of Aedes aegypti when Infected with a Life-Shortening Strain of Wolbachia

    Get PDF
    Mosquitoes transmit diseases when they are actively searching for a source of blood. This so called probing behavior comprises the “searching” time, the beginning of the feeding process until the first sign of blood can be seen within the insect body. The manipulation of this behavior can have important consequences for the mosquito's ability to transmit pathogens, such as dengue virus or Plasmodium. In this study we examined the probing behavior of the main vector of dengue viruses, Aedes aegypti, when infected with an intracellular bacterium, Wolbachia pipientis. This bacterium alters the probing behavior of older mosquitoes such that they take longer to find a feeding site and longer to imbibe blood, which may make them more susceptible to human defense responses. The bacterium appears to reduce mosquito feeding success by preventing the mosquito from successfully inserting its stylet into human skin. The old age onset of reduced mosquito feeding success due to Wolbachia could selectively promote a reduction in dengue transmission

    Assessment of Yellow Fever Epidemic Risk: An Original Multi-criteria Modeling Approach

    Get PDF
    This article describes the use of an original modeling approach to assess the risk of yellow fever (YF) epidemics. YF is a viral hemorrhagic fever responsible in past centuries for devastating outbreaks. Since the 1930s, a vaccine has been available that protects the individual for at least 10 years, if not for life. However, immunization of populations in African countries was gradually discontinued after the 1960s. With the decrease in immunity against YF in African populations the disease reemerged in the 1980s. In 2005, WHO, UNICEF, and the GAVI Alliance decided to support preventive vaccination of at-risk populations in West African endemic countries in order to tackle the reemergence of YF and reduce the risk of urban YF outbreaks. Financial resources were made available to scale up a global YF vaccine stockpile and to support countries with limited resources in the management of preventive vaccination campaigns. This article describes the process we used to determine the most at-risk populations using a mathematical model to prioritize targeted immunization campaigns. We believe that this approach could be useful for other diseases for which decision making process is difficult because of limited data availability, complex risk variables, and a need for rapid decisions and implementation

    Macrophages are exploited from an innate wound healing response to facilitate cancer metastasis

    Get PDF
    Tumour-associated macrophages (TAMs) play an important role in tumour progression, which is facilitated by their ability to respond to environmental cues. Here we report, using murine models of breast cancer, that TAMs expressing fibroblast activation protein alpha (FAP) and haem oxygenase-1 (HO-1), which are also found in human breast cancer, represent a macrophage phenotype similar to that observed during the wound healing response. Importantly, the expression of a wound-like cytokine response within the tumour is clinically associated with poor prognosis in a variety of cancers. We show that co-expression of FAP and HO-1 in macrophages results from an innate early regenerative response driven by IL-6, which both directly regulates HO-1 expression and licenses FAP expression in a skin-like collagen-rich environment. We show that tumours can exploit this response to facilitate transendothelial migration and metastatic spread of the disease, which can be pharmacologically targeted using a clinically relevant HO-1 inhibitor

    Paradoxical expression of cell cycle inhibitor p27 in endometrioid adenocarcinoma of the uterine corpus – correlation with proliferation and clinicopathological parameters

    Get PDF
    p27 is regarded as a cyclin-dependent kinase inhibitor of the G1-to-S cell cycle progression by suppressing the kinase activity of cyclin/cyclin-dependent kinase complex. This study aimed to investigate p27 expression in the normal endometrium and endometrioid adenocarcinoma of the uterine corpus and the correlation of its expression with cell proliferation and clinicopathological parameters. Tissue samples of 127 endometrioid adenocarcinomas and 15 normal endometria were used in the study. Immunohistochemical staining for detecting p27 and Ki-67 was performed by the labelled streptavidin-biotin method on formalin-fixed and paraffin-embedded tissue samples. The expression was given as the labelling index, which indicates the percentage of positive nuclei. p27 staining was observed in the nuclei of the glandular cells in the functional layer of the secretory phase endometrium, whereas it was negative in those of the proliferative phase. In endometrioid adenocarcinomas, the labelling index of p27 expression paradoxically increased more significantly in the higher histological grades and was correlated with that of Ki-67. The high level of p27 expression was associated with clinicopathological parameters such as FIGO stage, lymph node metastasis, lymphovascular space involvement and myometrial invasion. High p27 expression was linked to higher grades of endometrioid adenocarcinoma, cell proliferation and some clinical prognostic factors. These results indicate that p27 might be an indicator of poor prognosis

    Mapping and sequencing of structural variation from eight human genomes

    Get PDF
    Genetic variation among individual humans occurs on many different scales, ranging from gross alterations in the human karyotype to single nucleotide changes. Here we explore variation on an intermediate scale - particularly insertions, deletions and inversions affecting from a few thousand to a few million base pairs. We employed a clone- based method to interrogate this intermediate structural variation in eight individuals of diverse geographic ancestry. Our analysis provides a comprehensive overview of the normal pattern of structural variation present in these genomes, refining the location of 1,695 structural variants. We find that 50% were seen in more than one individual and that nearly half lay outside regions of the genome previously described as structurally variant. We discover 525 new insertion sequences that are not present in the human reference genome and show that many of these are variable in copy number between individuals. Complete sequencing of 261 structural variants reveals considerable locus complexity and provides insights into the different mutational processes that have shaped the human genome. These data provide the first high- resolution sequence map of human structural variation - a standard for genotyping platforms and a prelude to future individual genome sequencing projects
    corecore